摩擦因数计算润滑膜内部剪切力按HEyring模型,由此计算齿面摩擦因数fe=(kASxz=hdxdy)(kASyz=hdxdy)kApdxdy,数值计算流程及加速收敛措施本文采用顺解法,先求等温解,并以之为基础获得热解。在求热解过程中,速度场与温度场计算、油膜形状与压力场计算,是2个相互独立的计算内循环:先进行速度场与温度场循环迭代;进入压力迭代前先考虑由于热效应引起的中心膜厚变化。当2个内循环顺序通过,方跳入外循环计算,考虑挤压膜效应时,热解的压力峰值变平缓,膜厚也略有增加。
齿面温度分布与润滑膜速度分布温度分布并不很平滑,总的分布趋势呈驼峰,在靠近膜厚颈缩处对应有温度峰,而接触中心温度并不高。这一现象在齿宽方向(y方向)比较明显,从速度分布可以解释:在y轴线上沿x方向膜厚层的速度分布,所选节点入口区i=5和出口区i=23正好对应于膜厚颈缩处附近,该处沿膜厚的速度梯度很大,粘滞发热严重,因而润滑膜内部及齿面温升较大。另外,润滑膜入口区/紧缩0处中层速度已接近负值,有逆流出现的预兆,故对于重载点接触弹流,顺解法迭代的收敛速度及精度需要进行更深入研究。
温度分布三维图工况变化对润滑膜性能的影响,中心膜厚与最小膜厚载荷一定时,两者随转速的增加而增加,齿面接触点沿齿宽方向所具有的较高的滚动速度是改善圆弧齿轮润滑状态的主要因素。转速一定时,两者随载荷的增加最初减小较快,达到一定值后减小很缓慢,故重载条件下圆弧齿轮也具有较好的润滑性能。还发现同比渐开线齿轮传动,圆弧齿轮润滑膜厚度可达到3倍以上。齿面摩擦因数齿面摩擦因数分别随转速或载荷的增加而增加,在中、轻载下圆弧齿轮比渐开线齿轮传动的摩擦因数小接近一个量级,故以滚动摩擦为主的圆弧齿轮传动效率较高。